Texas Rice Research Update

L. T. (Ted) Wilson

Professor, Center Director, Jack B. Wendt Endowed
Chair in Rice Research

Rice Outlook Conference
December 7, 2023
Indian Wells, California

2023 Texas Rice Crop Update

ě	2022	2023	Acreage	% MC								RT7421		
ı	Acreage	Acreage	Change	Ratooned	XL723	RT7321FP	Cheniere	CL153	RT7523FP	CLL17	XL753	FP	CL151	PVL03
	191,648	145,606	-24%	45%	17.6%	13.1%	9.9%	8.6%	7.1%	4.5%	3.6%	3.1%	3.1%	2.8%

Wilson, L. T., Y. Yang, J. Wang, B. Morace, J. Samford, and M. Enard. 2021. Texas Rice Crop Survey, http://beaumont.tamu.edu/CropSurvey

Main Crop Yield, %H, %T							
Variety	Variety Type	Yield lb/ac	Milling Yield (%H)	Milling Yield (%T)			
CL151	Inbred	8,104	48.7	69.8			
RT7421 FP	Hybrid	6,960	40.0	62.0			
XL753	Hybrid	8,807	49.2	69.9			
<i>RT7523FP</i>	Hybrid	8,172	54.4	68.8			
CL153	Inbred	7,744	53.4	69.5			
RT7321FP	Hybrid	8,377	45.7	68.7			
Total (All varieties)		8,376*	50.9**	69.4***			
Historic (last 20 years)	All	7,850	58.9	71.1			

^{*}Main crop yield highest in the last 33 seasons

**Head rice yield lowest in the last 33 years

^{***}Total milling yield lowest in the last 25 years

2023 Texas Rice Crop Update

- Grain yield has increased at a rate of 69 lbs/ac/yr from 1991-2023
- Whole grain milling yields steadily increased when inbred varieties dominated production, but steadily decreased as hybrid production has increased
- Analysis showed a highly significant negative effect of average temperatures during a season interacting with main crop yield on main crop whole grain %

The effect of nighttime temperatures during grain filling

The effect of nighttime temperatures during grain filling

Position of grain within a panicle caused by seasonal variation in carbohydrate supply for growth

- The size of a grain at maturity is progressively smaller the later the grain is produced on a panicle
- Similarly, later a panicle is produced the smaller the size of its grain, with its latest produced grain usually the smallest

Mid

Basal

Basal

Terminal Terminal

A variety's vigor and to a degree its yield potential

 $D^{\circ} > 10^{\circ}C$ when Grain were Born

Variety Type	Modern Inbred Grain Size Variability	Average Relative C.V.
Historic Inbreds	0.076	0.603
2011-2020 Inbreds	0.126	1.000
Current Hybrids	0.141	1.120
Future Varieties (focus		
on yield increase)	0.148	1.175
Future Varieties (focus		
on yield increase)	0.101	0.802

 $D^{\circ} > 10^{\circ}$ C, at Grain Birth

Focus on developing high-yielding plant types

- Higher yields with decreased grain quality (major increase in chalkiness
 - and grain size variability)
- Decreased market price
- Possibly continued loss of global markets

Crop Season

Focus on developing plant types that balance yield increase with increased grain quality

- Modest expected yield increases
- Increased grain quality with decreased chalkiness and grain size variability
- Increases in market prices
- Reversal of losses of global markets
- Require a modification to the current pricing structure to place greater emphasis on grain quality

